Research Statement
My research direction is to investigate mechanisms of enzyme-catalyzed reactions and inhibitor binding processes by use of state-of-the art computational approaches. We are interested in understanding the origin of high catalytic efficiency and selectivity for enzymes. These studies would, in addition to being of fundamental scientific importance, also improve the basis for designing inhibitors, efficient drugs and enzyme mimics. We use molecular dynamics (MD) simulations, free energy calculations, mixed quantum mechanical/molecular mechanical (QM/MM) methods and other computational approaches to address the questions in these research areas. Several systems are currently under investigations in our laboratory, including protein lysine methyltransferases, RNA polymerases, serine-carboxyl peptidases, chorismate mutase, cytidine/adenosine deaminase, merB and merA. We also study structural and dynamic features of proteins and try to understand the forces that stabilize proteins.